При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1.4 ± 0.2) Н записывайте следующим образом: 1.40.2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Среди перечисленных ниже физических величин векторная величина указана в строке:

- 1) ускорение
- 2) масса
- 3) путь

2. Звуковой сигнал, посланный эхолокатором в момент времени t_1 =0 с, отразился от препятствия, возвратился обратно в момент времени $t_2 = 3,42$ с. Если модуль скорости распространения звука в воздухе v = 340 м/с, то расстояние L от локатора до препятствия

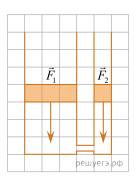
- 1) 100 m 2) 224 m 3) 475 m 4) 581 m 5) 649 m

3. Трасса велогонки состоит из трех одинаковых кругов. Если первый круг велосипедист проехал со средней скоростью <v₁> = 27 км/ч, второй $--<v_2>=35$ км/ч, третий $--<v_3>=22$ км/ч, то всю трассу велосипедист проехал со средней скоростью <v>> пути , равной:

- 1) 25 км/ч 2) 26 км/ч 3) 27 км/ч 4) 28 км/ч 5) 29 км/ч

4. Плотность вещества камня массы m=20 кг составляет $\rho_1=2.5\cdot 10^3$ кг/м 3 . Чтобы удержать камень в воде ($\rho_2=1.0\cdot 10^3$ $\kappa \Gamma / M^3$), необходимо приложить силу, модуль F которой равен:

- 1) 0.30 кH
- 2) 0.24 κH
- 3) 0,20 кH 4) 0,12 кH
- 5) 0.10 kH


5. Два тела массами m_1 и $m_2 = 3m_1$ двигались по гладкой горизонтальной м плоскости со скоростями, модули которых $v_1 = 3, 0 \frac{M}{C}$ и $v_2 = 1, 0 \frac{M}{C}$. Если после столкновения тела продолжили движение как единое целое, то модуль максимально возможной скорости υ тел непосредственно после столкновения равен:

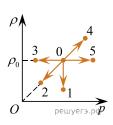
1)
$$1.5\frac{M}{c}$$

2)
$$2,0\frac{M}{c}$$

1)
$$1.5\frac{M}{C}$$
 2) $2.0\frac{M}{C}$ 3) $3.0\frac{M}{C}$ 4) $3.5\frac{M}{C}$ 5) $4.0\frac{M}{C}$

6. Два соединенных между собой вертикальных цилиндра заполнены несжимаемой жидкостью и закрыты невесомыми поршнями, которые могут перемещаться без трения. К поршням приложены силы \vec{F}_1 и \vec{F}_2 , направления которых указаны на рисунке. Если модуль силы F_2 = 3 H, то для удержания системы в равновесии модуль силы F_1 должен быть равен:

- 1) 3 H 2) 9 H
- 3) 13 H
- 4) 19 H

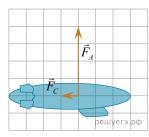

7. Число N_1 атомов лития $\left(M_1=7\ rac{\Gamma}{
m MOJIb}
ight)$ имеет массу $m_1=1\ \Gamma,\ N_2$ атомов кремния $\left(M_2=28\ rac{\Gamma}{
m MOJIb}
ight)$ имеет массу $m_2 = 4$ г. Отношение $\frac{N_1}{N_2}$ равно:

1)
$$\frac{1}{4}$$
 2) $\frac{1}{2}$ 3) 1 4) 2 5) 4

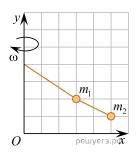
8. Если давление идеального газа p=2,0 к Π а, а средняя кинетическая энергия поступательного движения молекул газа $\langle E_{\rm K} \rangle = 1,5 \cdot 10^{-20}$ Дж, то концентрация n молекул газа равна:

- 1) $1.0 \cdot 10^{23} \text{ m}^{-3}$ 2) $1.5 \cdot 10^{23} \text{ m}^{-3}$ 3) $2.0 \cdot 10^{23} \text{ m}^{-3}$ 4) $1.5 \cdot 10^{23} \text{ m}^{-3}$ 5) $3.0 \cdot 10^{23} \text{ m}^{-3}$

9. На рисунке изображена зависимость плотности ρ от давления p для пяти процессов с идеальным газом, масса которого постоянна. Изохорное охлаждение газа происходит в процессе:

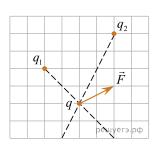


1)
$$0-1$$
 2) $0-2$ 3) $0-3$ 4) $0-4$ 5) $0-5$

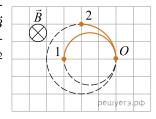

10. Если в результате трения о шерсть эбонитовая палочка приобрела отрицательный заряд q = -8 нКл, то общая масса m электронов, перешедших на эбонитовую палочку равна:

$$1)\ 9,1\ \cdot\ 10^{-17}\ \Gamma \qquad 2)\ 8,8\ \cdot\ 10^{-17}\ \Gamma \qquad 3)\ 7,6\ \cdot\ 10^{-17}\ \Gamma \qquad 4)\ 6,4\ \cdot\ 10^{-17}\ \Gamma \qquad 5)\ 4,6\ \cdot\ 10^{-17}\ \Gamma$$

- 11. Спортсмен, двигаясь прямолинейно, пробежал дистанцию длиной l=96 м, состоящую из двух участков, за промежуток времени $\Delta t=11$ с. На первом участке спортсмен разгонялся из состояния покоя и двигался равноускоренно в течение промежутка времени $\Delta t_1=6,0$ с. Если на втором участке спортсмен бежал равномерно, то модуль скорости υ спортсмена на финише равен ... $\frac{M}{c}$.
- 12. Дирижабль массой m=8 т летит в горизонтальном направлении с постоянной скоростью. На рисунке изображены сила Архимеда \vec{F}_A и сила сопротивления воздуха $\vec{F}_{\rm c}$, действующие на дирижабль. Если сила тяги $\vec{F}_{\rm T}$ двигателей дирижабля направлена горизонтально, то модуль этой силы равен ... κH .



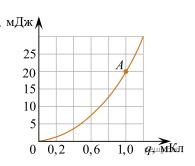
- 13. Трактор, коэффициент полезного действия которого $\eta = 20$ %, при вспашке горизонтального участка поля равномерно движется со скоростью, модуль которой $\upsilon = 5,4$ км/ч. Если за промежуток времени $\Delta t = 0,50$ ч было израсходовано топливо массой m = 5,0 кг (q = 41 МДж/кг), то модуль силы тяги F трактора равен ... кH.
- **14.** Вокруг вертикальной оси Oy с постоянной угловой скоростью ω вращаются два небольших груза, подвешенных на лёгкой нерастяжимой нити. Верхний конец нити прикреплён к оси (см. рис.). Если масса первого груза $m_1 = 90$ г, то масса первого груза m_2 равна ... г. *Примечание*. Масштаб сетки вдоль обеих осей одинаков.


- 15. В закрытом сосуде вместимостью V = 1,00 см 3 находится N = 3,80 · 10 20 молекул идеального газа при давлении p = 536 кПа. Если молярная масса газа M = 32,0 $\frac{\Gamma}{\text{моль}}$, то средняя квадратичная скорость $\langle \upsilon_{\text{KB}} \rangle$ поступательного движения молекул этого газа равна... $\frac{M}{C}$. (Число Авогадро 6,02 · 10 23 моль $^{-1}$.)
- **16.** В теплоизолированный сосуд, содержащий $m_1 = 90$ г льда ($\lambda = 330$ кДж/кг) при температуре плавления $t_1 = 0$ °C, влили воду ($c = 4,2 \ 10^3$ Дж/(кг °C)) массой $m_2 = 55$ г при температуре $t_2 = 40$ °C. После установления теплового равновесия масса m_3 льда в сосуде станет равной ... г.
- 17. Идеальный одноатомный газ, количество вещества которого v = 7,0 моль, при изобарном охлаждении отдал количество теплоты $|Q_{\text{охл}}| = 24$ кДж. Если при этом объем газа уменьшился в k = 2,0 раза, то начальная температура газа t_1 равна ... °C.

18. На точечный заряд q, находящийся в электростатическом поле, созданном зарядами q_1 и q_2 , действует сила \vec{F} (см.рис.). Если заряд q_1 = 5,8 нКл, то заряд q_2 равен ...нКл.

19. Аккумулятор, ЭДС которого ε = 1,6 В и внутреннее сопротивление r = 0,1 Ом, замкнут нихромовым (c = 0,46 кДж/(кг · K) проводником массой m = 39,1 г. Если на нагревание проводника расходуется α = 75% выделяемой в проводнике энергии, то максимально возможное изменение температуры $\Delta T_{\rm max}$ проводника за промежуток времени Δt = 1 мин равно ... K.

20. Два иона (1 и 2) с одинаковыми заряди $q_1 = q_2$, вылетевшие одновременно из точки O, равномерно движутся по окружностям под действием однородного магнитного поля, линии индукции \vec{B} которого перпендикулярны плоскости рисунка. На рисунке показаны траектории этих частиц в некоторый момент времени t_1 . Если масса первой частицы $m_1 = 8,0$ а. е. м., то масса второй частицы m_2 равна ... а. е. м.

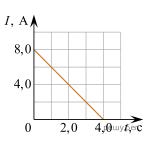


21. К источнику переменного напряжения, напряжение на клеммах которого изменяется по гармоническому закону, подключена электрическая плитка, потребляющая мощность $P=350~{\rm Br}$. Если действующее значение силы тока в цепи $I_{\rm д}=9,0~{\rm A}$, то амплитудное значение напряжения U_0 на плитке равно ... **B**.

22. Маленькая заряжённая бусинка массой m=1,5 г может свободно скользить по оси, проходящей через центр тонкого незакреплённого кольца перпендикулярно его плоскости. По кольцу, масса которого M=4,5 г и радиус R=40 см, равномерно распределён заряд Q=3,0 мкКл. В начальный момент времени кольцо покоилось, а бусинке, находящейся на большом расстоянии от кольца, сообщили скорость, модуль которой $\upsilon_0=2,4$ $\frac{\rm M}{\rm C}$. Максимальный заряд бусинки $q_{\rm max}$, при котором она сможет пролететь сквозь кольцо, равен ... **нКл**.

23. Маленький заряженный шарик массой m=4,0 мг подвешен в воздухе на тонкой непроводящей нити. Под этим шариком на вертикали, проходящей через его центр, поместили второй маленький шарик, имеющий такой же заряд $(q_1=q_2)$, после чего положение первого шарика не изменилось, а сила натяжения нити стала равной нулю. Если расстояние между шариками r=30 см, то модуль заряда каждого шарика равен ... нКл.

24. График зависимости энергии электростатического поля W конденсатора от его заряда q представлен на рисунке. Точке A на графике соответствует напряжение U на конденсаторе, равное ... В.



25. Сила тока в резисторе сопротивлением R=16 Ом зависит от времени t по закону I(t)=B+Ct, где B=6,0 А, C=-0,50 $\frac{\mathrm{A}}{\mathrm{c}}$. В момент времени $t_1=10$ с тепловая мощность P, выделяемая в резисторе, равна ... Вт.

26. Резистор сопротивлением R=10 Ом подключён к источнику тока с ЭДС $\mathcal{E}=13$ В и внутренним сопротивлением r=3,0 Ом. Работа электрического тока A на внешнем участке электрической цепи, совершённая за промежуток времени $\Delta t=9,0$ с, равна ... Дж.

27. Электроскутер массой m=130 кг (вместе с водителем) поднимается по дороге с углом наклона к горизонту $\alpha=30^\circ$ с постоянной скоростью \vec{v} . Сила сопротивления движению электроскутера прямо пропорциональна его скорости: $\vec{F_c}=-\beta\vec{v}$, где $\beta=1,25$ $\frac{\text{H}\cdot\text{c}}{\text{M}}$. Напряжение на двигателе электроскутера U=480 В, сила тока в обмотке двигателя I=40 А. Если коэффициент полезного действия двигателя $\eta=85\%$, то модуль скорости v движения электроскутера равен ... $\frac{\text{M}}{c}$.

28. На рисунке представлен график зависимости силы тока I в катушке индуктивностью L=7,0 Гн от времени t. ЭДС $\mathcal{E}_{\mathbf{c}}$ самоиндукции, возникающая в этой катушке, равна ... В.

29. Идеальный колебательный контур состоит из конденсатора электроёмкостью C=150 мкФ и катушки индуктивностью L=1,03 Гн. В начальный момент времени ключ K разомкнут, а конденсатор заряжен (см. рис.). После замыкания ключа заряд конденсатора уменьшится в два раза через минимальный промежуток времени Δt , равный ... мс.

30. Луч света, падающий на тонкую рассеивающую линзу с фокусным расстоянием |F|=30 см, пересекает главную оптическую ось линзы под углом α , а продолжение преломлённого луча пересекает эту ось под углом β . Если отношение $\frac{\operatorname{tg}\beta}{\operatorname{tg}\alpha}=\frac{5}{2}$, то точка пересечения продолжения преломлённого луча с главной оптической осью находится на расстоянии f от оптического центра линзы, равном ... см.